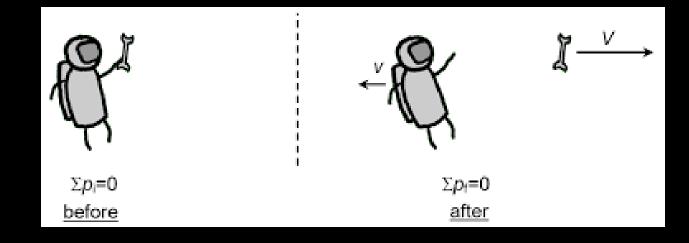

# Basics of Rocket Propulsion

Wyatt Thomas

# Core Physics Concepts: Newtons 3<sup>rd</sup> Law


- Every action has an equal and opposite reaction
- Rockets use this to their advantage by expelling mass in the opposite direction to where they want to travel, like the balloon in the diagram



(Gibbs, n.d.)

# Core Physics Concept: Conservation of Momentum

- Momentum is the mass of an object multiplied by the velocity of the same object
- Because rockets constantly expel propellants and thus decrease their mass, the velocity of the rocket must increase to conserve momentum (Hall, 2021)



# The Rocket Equation (Tsiolkovsky Equation)

The rocket equation combines these physics concepts into one simple equation (Sutton, 2001, p. 732)

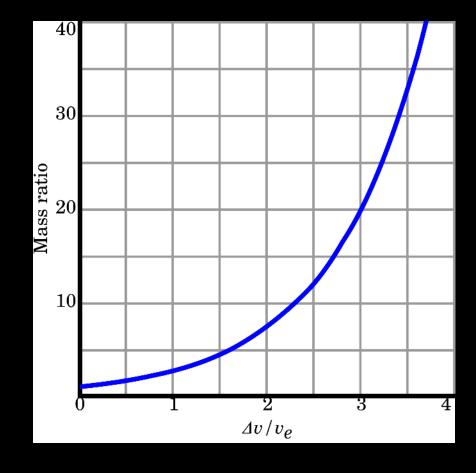
$$\Delta v = v_e ln \frac{m_0}{m_f}$$

 $\Delta v$  – change in velocity

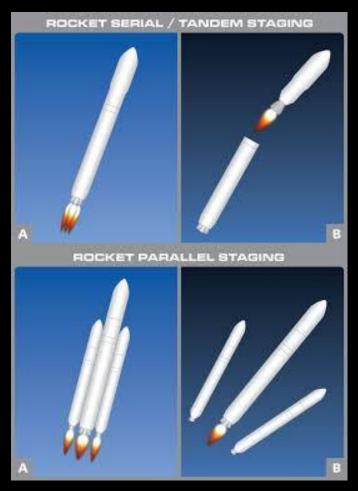
 $v_e$  – exhaust velocity

 $m_0$  – initial mass (wet mass)

 $m_f$  – final mass (dry mass)


- The change in velocity, or Δv is the single most important quantity of a rocket. This is because the Δv determines how far and fast a rocket can go and thus is the limiting factor of spacecraft maneuvers and orbits.
- By relating ∆v to exhaust velocity and the propellant mass ratio, a rocket's performance can be characterized

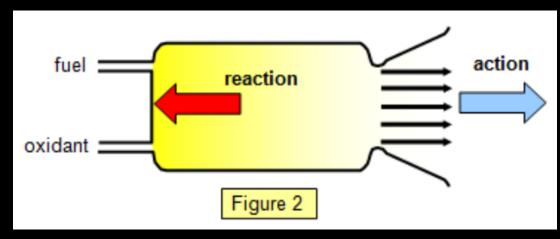
### The Problem – Exponential Growth


If the equation is solved for the required propellant mass to reach a desired  $\Delta v$ , we get:

$$m_0 - m_f = m_f \left( e^{\frac{\Delta v}{v_e}} - 1 \right)$$

- The mass of propellant required to achieve a desired  $\Delta v$  increases at an exponential rate
- If we want to make rockets achieve larger orbits or travel to further planets, we must use exponentially more propellant




# The Solution – Staging

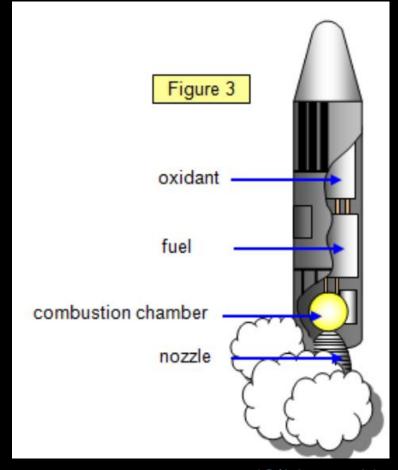


- By staging a rocket, it can drop off the unnecessary weight of spent tanks or boosters mid-flight
- Staging can be accomplished in many ways. Some rockets, like the Saturn V, employ tandem staging, where each stage fires one after another (Schulman, 2025, p. 16–17)
- Other rockets, like the Space Shuttle, use parallel staging, where multiple stages fire at the same time, and are jettisoned at different times (Hurley, 1972)

(Wessels, 2022)

### The Rocket Engine




(Gibbs, n.d.)

- The engine's job is to take the stored chemical energy of the propellants and convert it into kinetic energy through high velocity exhaust (Sutton, 2001, ch. 3)
- Recall the balloon diagram from earlier; the engine has the same action-reaction pair

### Fundamental Parts of a Rocket Engine

A rocket engine consists of three main components (Sutton, 2001, ch. 6)

- The propellant, which is where the chemical potential energy is stored and is the mass expelled from the nozzle
- The combustion chamber, where the energy stored in the propellants is converted to kinetic energy
- The nozzle, which converts the massive amounts of energy stored in the temperature and pressure of the combusted propellants into velocity



#### References

Gibbs, K. (n.d.). *Rockets*. Schoolphysics. <a href="https://www.schoolphysics.co.uk/age14-16/Mechanics/Forces%20in%20motion/text/Rockets\_/index.html">https://www.schoolphysics.co.uk/age14-16/Mechanics/Forces%20in%20motion/text/Rockets\_/index.html</a>

Hall, N. (2021). *Conservation of momentum*. National Aeronautics and Space Administration. <a href="https://www.grc.nasa.gov/www/k-12/airplane/conmo.html">https://www.grc.nasa.gov/www/k-12/airplane/conmo.html</a>

Hurley, M. J., & Carrie, G. W. (1972). Stage Seperation of Parallel-Staged Shuttle Vehicles, a Capabillity Assessment. Volume 4: Operational flight mechanics. https://ntrs.nasa.gov/api/citations/19720013240/downloads/19720013240.pdf

Schulman, M. (2025). *Saturn V Step-by-Step: Vol. Revision 1.5*. National Aeronautics and Space Administration. <a href="https://www.nasa.gov/wp-content/uploads/static/history/afj/pdf/saturn-V-step-by-step.pdf">https://www.nasa.gov/wp-content/uploads/static/history/afj/pdf/saturn-V-step-by-step.pdf</a>

Sutton, G. P., & Biblarz, O. (2001). Rocket propulsion elements (7. ed). Wiley.

Wessels, W. (2022, March 3). Rocket stages—What they are and the number used on orbital rockets. *Headed For Space*. <a href="https://headedforspace.com/the-number-of-stages-on-a-modern-orbital-rocket/">https://headedforspace.com/the-number-of-stages-on-a-modern-orbital-rocket/</a>